provocationofmind.com

Integrating AWS Kinesis for Live Stock Market Data Streaming

Written on

Chapter 1: Introduction to Real-Time Stock Market Data

The ability to analyze stock market data in real-time is crucial for making educated investment choices. This article explores how to implement AWS Kinesis for real-time data streaming of stock market trends using Python, detailing each step from data collection to inference generation with a PyTorch model.

Section 1.1: Retrieving Live Stock Market Data

To begin retrieving data, you will first need to acquire API keys for both FRED and Yahoo Finance. You can execute the following command:

python fetch_data.py - fred_api_key YOUR_FRED_API_KEY - yahoo_api_key YOUR_YAHOO_API_KEY

import pandas_datareader as pdr

import yfinance as yf

import argparse

parser = argparse.ArgumentParser(description='Retrieve stock market data.')

parser.add_argument('--fred_api_key', type=str, required=True, help='FRED API Key')

parser.add_argument('--yahoo_api_key', type=str, required=True, help='Yahoo Finance API Key')

args = parser.parse_args()

yf.pdr_override()

# Features

yield_curve = pdr.get_data_fred('T10Y3M', api_key=args.fred_api_key)

recession_prob = pdr.get_data_fred('RECPROUSM156N', api_key=args.fred_api_key)

sp500 = yf.download('^GSPC', start='2000-01-01', end='2023-01-01', api_key=args.yahoo_api_key)

# Target

usrec = pdr.get_data_fred('USREC', api_key=args.fred_api_key)

Section 1.2: Streaming Data into Kinesis

Make sure that your AWS CLI is set up with the required permissions. Use the command below to stream your data:

python stream_to_kinesis.py - stream_name YOUR_STREAM_NAME

import boto3

import argparse

parser = argparse.ArgumentParser(description='Send data to Kinesis.')

parser.add_argument('--stream_name', type=str, required=True, help='Kinesis Stream Name')

args = parser.parse_args()

kinesis = boto3.client('kinesis')

data = {

'usrec': usrec.to_dict(),

'yield_curve': yield_curve.to_dict(),

'recession_prob': recession_prob.to_dict(),

'sp500': sp500.to_dict()

}

response = kinesis.put_record(

StreamName=args.stream_name,

Data=str(data),

PartitionKey='stock_data'

)

Chapter 2: Data Transformation and Storage

The video "How to Build a Real-Time Streaming Data Pipeline with Kinesis" illustrates the process of creating a real-time data pipeline utilizing AWS Kinesis. It provides insights into setting up a robust data streaming architecture.

Section 2.1: Data Processing with AWS Lambda

Ensure your AWS CLI is configured correctly and the necessary Lambda functions are deployed. The command for Lambda deployment is:

aws lambda create-function --function-name firehose_transformation --runtime python3.8 --role YOUR_LAMBDA_ROLE_ARN --handler lambda_function.firehose_transformation --zip-file fileb://path_to_your_lambda_function.zip

import json

import base64

def firehose_transformation(event, context):

output = []

for record in event['records']:

payload = base64.b64decode(record['data'])

transformed_payload = json.loads(payload)

# Transformation logic

# Extracting relevant features and formatting for further analysis

transformed_payload['usrec_monthly_change'] = transformed_payload['usrec'][-1] - transformed_payload['usrec'][-2]

transformed_payload['yield_curve_trend'] = sum(transformed_payload['yield_curve'][-5:]) / 5 # 5-month average

transformed_payload['sp500_monthly_return'] = (transformed_payload['sp500'][-1] - transformed_payload['sp500'][-2]) / transformed_payload['sp500'][-2]

transformed_payload['recession_prob_trend'] = sum(transformed_payload['recession_prob'][-5:]) / 5 # 5-month average

# Removing raw data to keep the payload concise

del transformed_payload['usrec']

del transformed_payload['yield_curve']

del transformed_payload['recession_prob']

del transformed_payload['sp500']

output_record = {

'recordId': record['recordId'],

'result': 'Ok',

'data': base64.b64encode(json.dumps(transformed_payload).encode('utf-8')).decode('utf-8')

}

output.append(output_record)

return {'records': output}

Chapter 3: Data Preprocessing and Model Training

The video titled "Analyzing Data Streams in Real Time with Amazon Kinesis: PNNL's Serverless Data Lake Ingestion" provides a detailed guide on how to efficiently analyze real-time data streams.

Section 3.1: Data Preparation Using Pandas and Scikit-Learn

To preprocess your data, run the following command:

python preprocess_data.py --input_file path_to_input_data.csv --output_file path_to_output_data.csv

import pandas as pd

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import MinMaxScaler

import argparse

parser = argparse.ArgumentParser(description='Prepare stock market data.')

parser.add_argument('--input_file', type=str, required=True, help='Path to input data file')

parser.add_argument('--output_file', type=str, required=True, help='Path to output data file')

args = parser.parse_args()

data = pd.read_csv(args.input_file)

# Features and Target

features = ['yield_curve_trend', 'sp500_monthly_return', 'recession_prob_trend']

target = 'usrec_monthly_change'

X = data[features]

y = data[target]

pipeline = Pipeline([ ('scaler', MinMaxScaler())])

normalized_data = pipeline.fit_transform(X)

normalized_data = pd.DataFrame(normalized_data, columns=features)

normalized_data[target] = y

normalized_data.to_csv(args.output_file, index=False)

Section 3.2: Training the Recession Classification Model

To train your model, use the command:

python train_model.py --train_data path_to_train_data.csv --model_output path_to_model_output.pth

import torch

import torch.nn as nn

import torch.optim as optim

import pandas as pd

from sklearn.model_selection import train_test_split

import argparse

parser = argparse.ArgumentParser(description='Train recession classification model.')

parser.add_argument('--train_data', type=str, required=True, help='Path to training data file')

parser.add_argument('--model_output', type=str, required=True, help='Path to save trained model')

args = parser.parse_args()

data = pd.read_csv(args.train_data)

# Preprocessing and splitting logic

X = data.drop('USREC', axis=1).values

y = data['USREC'].values

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

class RecessionNet(nn.Module):

def __init__(self):

super(RecessionNet, self).__init__()

self.fc1 = nn.Linear(3, 10)

self.fc2 = nn.Linear(10, 1)

self.sigmoid = nn.Sigmoid()

def forward(self, x):

x = torch.relu(self.fc1(x))

x = self.sigmoid(self.fc2(x))

return x

model = RecessionNet()

criterion = nn.BCELoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)

# Training loop

epochs = 50

for epoch in range(epochs):

inputs = torch.tensor(X_train, dtype=torch.float32)

labels = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)

optimizer.zero_grad()

outputs = model(inputs)

loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

if epoch % 10 == 0:

print(f"Epoch {epoch}/{epochs}, Loss: {loss.item()}")

# Save the trained model

torch.save(model.state_dict(), args.model_output)

Section 3.3: Making Predictions

To use your trained model for making predictions, run:

python make_inferences.py --model_path path_to_trained_model.pth --input_data path_to_input_data.csv

import torch

import pandas as pd

import argparse

parser = argparse.ArgumentParser(description='Generate predictions using trained model.')

parser.add_argument('--model_path', type=str, required=True, help='Path to trained model')

parser.add_argument('--input_data', type=str, required=True, help='Path to input data for prediction')

args = parser.parse_args()

class RecessionNet(nn.Module):

def __init__(self):

super(RecessionNet, self).__init__()

self.fc1 = nn.Linear(3, 10)

self.fc2 = nn.Linear(10, 1)

self.sigmoid = nn.Sigmoid()

def forward(self, x):

x = torch.relu(self.fc1(x))

x = self.sigmoid(self.fc2(x))

return x

model = RecessionNet()

model.load_state_dict(torch.load(args.model_path))

model.eval()

data = pd.read_csv(args.input_data)

X_test = data.drop('USREC', axis=1).values

with torch.no_grad():

inputs = torch.tensor(X_test, dtype=torch.float32)

predictions = model(inputs)

predictions = (predictions > 0.5).int() # Classify as 0 or 1 based on threshold

print(predictions)

Conclusion

By leveraging AWS Kinesis for the real-time streaming of stock market data, we can utilize AWS services and Python libraries for effective data processing and analysis. Ensure that you have the necessary API keys, AWS configurations, and data files prepared before executing the provided scripts and commands.

Please subscribe via email for updates!

In Plain English

Thank you for being a part of our community! Before you go, be sure to clap and follow the writer! 👏 You can find even more content at PlainEnglish.io 🚀 Sign up for our free weekly newsletter. 🗞️ Follow us on Twitter, LinkedIn, YouTube, and Discord.

Share the page:

Twitter Facebook Reddit LinkIn

-----------------------

Recent Post:

Exploring Dark Matter and Dark Energy Through Particle Physics

Discover how CERN and particle accelerators are unraveling the mysteries of dark matter and dark energy.

Empowering Your Confidence: A Guide to Leadership Growth

Explore ways to boost confidence and improve leadership through practical steps and insightful discussions.

Navigating Beyond Fitness Goals: Embracing the Journey Ahead

Explore how to embrace the fitness journey after achieving your goals and the importance of pushing beyond perceived limits.

Ozone Therapy: A Dangerous Trend You Should Avoid

Ozone therapy may pose serious health risks despite celebrity endorsements. Learn why it's not a safe choice for wellness.

You're Not Alone: Essential Steps to Enhance Your Mental Well-Being

Discover actionable strategies to improve your mental health and embrace self-care for a more fulfilling life.

Unlocking the Benefits of Mindfulness During Your Vacation

Discover how mindfulness can enhance your vacation experience and improve your overall well-being.

Rethinking the Formation of the Milky Way Galaxy: New Insights

Recent findings suggest the Milky Way's formation involved a merger with another galaxy 10 billion years ago, reshaping our understanding of its history.

# Smart Strategies for Holiday Spending: What to Skip

Discover effective ways to save during the holidays by avoiding common budget traps and making smarter choices.